Search any question & find its solution
Question:
Answered & Verified by Expert
The time period of a $1500 \mathrm{~kg}$ satellite is equal to the time period of rotation of the earth. The altitude of the satellite is nearly
Options:
Solution:
1526 Upvotes
Verified Answer
The correct answer is:
$35,840 \mathrm{~km}$
Mass of satellite, $\mathrm{m}=1500 \mathrm{~kg}$
Time period of satellite, $\mathrm{T}=26 \times 60 \times 60=93,600 \mathrm{sec}$
$\begin{aligned} & \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{R}^3}{\mathrm{GM}}} \\ & \mathrm{R}^3=\frac{\mathrm{T}^2 \mathrm{GM}}{4 \pi^2} \\ & \text { Altitude, } \mathrm{A}=\left(\frac{\mathrm{T}^2 \mathrm{GM}}{4 \pi^2}\right)^{\frac{1}{3}}-\mathrm{R}\end{aligned}$
Time period of satellite, $\mathrm{T}=26 \times 60 \times 60=93,600 \mathrm{sec}$
$\begin{aligned} & \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{R}^3}{\mathrm{GM}}} \\ & \mathrm{R}^3=\frac{\mathrm{T}^2 \mathrm{GM}}{4 \pi^2} \\ & \text { Altitude, } \mathrm{A}=\left(\frac{\mathrm{T}^2 \mathrm{GM}}{4 \pi^2}\right)^{\frac{1}{3}}-\mathrm{R}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.