Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The top of a hill observed from the top and bottom of a building of height $\mathrm{h}$ is at angles of elevation $\alpha$ and $\beta$ respectively. The height of the hill is: $\quad$
MathematicsHeights and DistancesNDANDA 2012 (Phase 2)
Options:
  • A $\frac{h \cot \beta}{\cot \beta-\cot \alpha}$
  • B $\frac{\mathrm{h} \cot \alpha}{\cot \alpha-\cot \beta}$
  • C $\frac{\mathrm{h} \tan \alpha}{\tan \alpha-\tan \beta}$
  • D None of the above
Solution:
1184 Upvotes Verified Answer
The correct answer is: $\frac{\mathrm{h} \cot \alpha}{\cot \alpha-\cot \beta}$


$\operatorname{In} \Delta \mathrm{BDC}$,
$\tan \beta=\frac{\mathrm{CD}}{\mathrm{BD}}=\frac{\mathrm{H}}{\mathrm{BD}}$
$\mathrm{BD}=\frac{\mathrm{H}}{\tan \beta}=\mathrm{H} \cot \beta$
In $\triangle$ ALC, $\tan \alpha=\frac{\mathrm{CL}}{\mathrm{AL}}=\frac{\mathrm{H}-\mathrm{h}}{\mathrm{BD}}$
$\mathrm{BD}=(\mathrm{H}-\mathrm{h}) \cot \alpha$
from (i) \& (ii), $(\mathrm{H}-\mathrm{h}) \cot \alpha=\mathrm{H} \cot \beta$
$\mathrm{H} \cot \alpha-\mathrm{h} \cot \alpha=\mathrm{H} \cot \beta$
$\mathrm{H}[\cot \alpha-\cot \beta]=\mathrm{h} \cot \alpha$
$\mathrm{H}=\frac{\mathrm{h} \cot \alpha}{\cot \alpha-\cot \beta}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.