Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The unit vector perpendicular to the vector i^-2j^+3k^ and coplanar with the vectors i^+j^+k^ and 2i^-j^-k^ is
MathematicsVector AlgebraTS EAMCETTS EAMCET 2021 (04 Aug Shift 2)
Options:
  • A ±152i^+j^
  • B ±1453i^-6j^-5k^
  • C ±16i^+2j^+k^
  • D ±13i^-j^-k^
Solution:
1892 Upvotes Verified Answer
The correct answer is: ±13i^-j^-k^

Let a=xi^+yj^+zk^  

b=i^-2j^+3k^

c=i^+j^+k^

d=2i^-j^-k^

 a is coplanar to vector c & d  

Let c×d=E 

c×d=i^j^k^1112-1-1=i^-1+1-j^-3+k^-3

E=0i^+3j^-3k^

Since E is perpendicular to both vectors c and d so it will also be perpendicular to a as a,c & d are coplanar.

Now aE  a·E=0    a1a2+b1b2+c1c2=0

xi^+yj^+zk^·0i^+3j^-3k^=0

3y-3z=0

y=z  ...1

a is also perpendicular to b so, a·b=0

xi^+yj^+zk^·i^-2j^+3k^=0  

 x-2y+3z=0

x-2y+3y=0   by i

x=-y ...2

So a=±xi^+yj^+zk^, where  x=-y, x=-z

a^=aa=xi^-j^-k^x1+1+1=±13i^-j^-k^

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.