Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The value of $a$ and $b$ such that the function $f(x)=\left\{\begin{array}{ll}-2 \sin x, & -\pi \leq x \leq-\frac{\pi}{2} \\ a \sin x+b, & -\frac{\pi}{2} < x < \frac{\pi}{2} \text { is continuous } \\ \cos x, & \frac{\pi}{2} \leq x \leq \pi\end{array}\right.$
in $[-\pi, \pi]$, are
MathematicsContinuity and DifferentiabilityMHT CETMHT CET 2010
Options:
  • A $-1,0$
  • B 1,0
  • C 1,1
  • D $-1,1$
Solution:
1106 Upvotes Verified Answer
The correct answer is: $-1,1$
For continuity in $[-\pi, \pi]$, we must have
$$
\begin{array}{l}
\text { At } x=-\frac{\pi}{2}, f\left(-\frac{\pi}{2}\right)=\lim _{x \rightarrow\left(-\frac{\pi}{2}\right)^{-}}(-2 \sin x) \\
=\lim _{x \rightarrow\left(-\frac{\pi}{2}\right)^{+}}(a \sin x+b) \\
\Rightarrow \quad 2=-a+b
\end{array}
$$
At $x=\frac{\pi}{2}$,
$$
f\left(\frac{\pi}{2}\right)=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}}(a \sin x+b)=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{+}} \cos x
$$
$$
\Rightarrow \quad 0=a+b
$$
$\cdots$
On solving Eqs. (i) and (ii) we get, $a=-1, b=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.