Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The value of $\sin \left[2 \cos ^{-1} \frac{\sqrt{5}}{3}\right]$ is
MathematicsInverse Trigonometric FunctionsCOMEDKCOMEDK 2020
Options:
  • A $\frac{2 \sqrt{5}}{3}$
  • B $\frac{\sqrt{5}}{3}$
  • C $\frac{2 \sqrt{5}}{9}$
  • D $\frac{4 \sqrt{5}}{9}$
Solution:
1579 Upvotes Verified Answer
The correct answer is: $\frac{4 \sqrt{5}}{9}$
We have,
$$
\begin{aligned}
\sin \left(2 \cos ^{-1} \frac{\sqrt{5}}{3}\right) &=\sin \left\{\cos ^{-1}\left(2 \times\left(\frac{\sqrt{5}}{3}\right)^{2}-1\right)\right\} \\
&=\sin \left\{\cos ^{-1}\left(\frac{10}{9}-1\right)\right\} \\
&=\sin \left(\cos ^{-1} \frac{1}{9}\right)
\end{aligned}
$$
$$
\begin{aligned}
&=\sin \left\{\sin ^{-1} \sqrt{1-\left(\frac{1}{9}\right)^{2}}\right\} \\
&=\sin \left\{\sin ^{-1}\left(\frac{4 \sqrt{5}}{9}\right)\right\}=\frac{4 \sqrt{5}}{9}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.