Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The value of $\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{8}\right)$ is
MathematicsInverse Trigonometric FunctionsMHT CETMHT CET 2020 (16 Oct Shift 2)
Options:
  • A $\frac{\pi}{3}$
  • B $\frac{\pi}{12}$
  • C $\frac{\pi}{4}$
  • D $\frac{\pi}{6}$
Solution:
1015 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{4}$
(D)
Point of intersection of $x=4$ and $3 x+2 y=18$ is $Q \equiv(4,3)$
Point of intersection of $y=6$ and $3 x+2 y=18$ is $P \equiv(2,6)$
Point $D \equiv(4,0)$ and $C \equiv(0,6)$ are as shown.
The feasible region of th given L.P.P. is shaded portion CPQ D O.
We have to maximize $\mathrm{Z}=3 \mathrm{x}+5 \mathrm{y}$.
Now,
$\begin{array}{ll}\mathrm{Z} \text { at } \mathrm{C}(0,6) & =3(0)+5(6)=30 \\ \mathrm{Z} \text { at } \mathrm{P}(2,6) & =3(2)+5(6)=36 \\ \mathrm{Z} \text { at } \mathrm{Q}(4,3) & =3(4)+5(3)=27 \\ \mathrm{Z} \text { at } \mathrm{D}(4,0) & =3(4)+5(0)=12 \\ \mathrm{Z} \text { at } \mathrm{O}(0,0) & =3(0)+5(0)=0\end{array}$
Clearly the maximum value of $Z$ is 36 at $P(2,6)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.