Search any question & find its solution
Question:
Answered & Verified by Expert
The value of the determinant
$\left|\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos (\alpha+\beta) & -\sin (\alpha+\beta) & 1\end{array}\right|$ is
Options:
$\left|\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos (\alpha+\beta) & -\sin (\alpha+\beta) & 1\end{array}\right|$ is
Solution:
1466 Upvotes
Verified Answer
The correct answer is:
independent of $\alpha$
Given, $\left|\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos (\alpha+\beta) & -\sin (\alpha+\beta) & 1\end{array}\right|$
$\left[\right.$ Applying $\left.\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}(\cos \beta)+\mathrm{R}_{2}(\sin \beta)\right]$ $=\left|\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ 0 & 0 & 1+\sin \beta-\cos \beta\end{array}\right|$ $=(1+\sin \beta-\cos \beta)\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)$ $=1+\sin \beta-\cos \beta$, which is independent of $\alpha .$
$\left[\right.$ Applying $\left.\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}(\cos \beta)+\mathrm{R}_{2}(\sin \beta)\right]$ $=\left|\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ 0 & 0 & 1+\sin \beta-\cos \beta\end{array}\right|$ $=(1+\sin \beta-\cos \beta)\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)$ $=1+\sin \beta-\cos \beta$, which is independent of $\alpha .$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.