Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The value of $\int \frac{x^{2}+1}{x^{2}-1} d x$ is
MathematicsIndefinite IntegrationKCETKCET 2007
Options:
  • A $\log \left(\frac{x-1}{x+1}\right)+c$
  • B $\log \left(\frac{x+1}{x-1}\right)+c$
  • C $x+\log \left(\frac{x-1}{x+1}\right)+c$
  • D $\log \left(x^{2}-1\right)+c$
Solution:
2512 Upvotes Verified Answer
The correct answer is: $x+\log \left(\frac{x-1}{x+1}\right)+c$
Let $I=\int \frac{x^{2}+1}{x^{2}-1} d x=\int \frac{x^{2}+1-1+1}{x^{2}-1} d x$
$$
\begin{aligned}
&\Rightarrow I=\int \frac{x^{2}-1}{x^{2}-1} d x+\int \frac{2}{x^{2}-1} d x \\
&\Rightarrow I=\int 1 d x+2 \int \frac{1}{x^{2}-1} d x \\
&\Rightarrow I=x+2 \cdot \frac{1}{2} \log \left(\frac{x-1}{x+1}\right)+c \\
&\Rightarrow I=x+\log \left(\frac{x-1}{x+1}\right)+c
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.