Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The values of constants $\mathrm{a}$ and $\mathrm{b}$, so that $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+1}{x+1}-a x-b\right)=0$ are
MathematicsLimitsVITEEEVITEEE 2011
Options:
  • A $a=0, b=0$
  • B $a=1, b=-1$
  • C $a=-1, b=1$
  • D $a=2, b=-1$
Solution:
1508 Upvotes Verified Answer
The correct answer is: $a=1, b=-1$
$$
\begin{array}{l}
\lim _{x \rightarrow \infty}\left(\frac{x^{2}+1}{x+1}-a x-b\right)=0 \\
\Rightarrow \lim _{x \rightarrow \infty}\left[\frac{x^{2}(1-a)-(a+b) x-b+1}{x+1}\right]=0 \\
\Rightarrow 1-a=0 \text { and } a+b=0 \Rightarrow a=1, b=-1
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.