Search any question & find its solution
Question:
Answered & Verified by Expert
The vector $\vec{a}$ and $\vec{b}$ are not perpendicular and $\vec{c}$ and $\vec{d}$ are two vectors satisfying: $\vec{b} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \cdot \vec{d}=0$. Then the vector $\vec{d}$ is equal to
Options:
Solution:
1680 Upvotes
Verified Answer
The correct answer is:
$\vec{c}-\left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}$
$\vec{c}-\left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}$
$\overline{\mathrm{b}} \times \overline{\mathrm{c}}=\overline{\mathrm{b}} \times \overline{\mathrm{d}}$
$\Rightarrow \overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{d}})$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}=(\overline{\mathrm{a}} \cdot \overline{\mathrm{d}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{d}}$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}=-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{d}}$
$\therefore \overline{\mathrm{d}}=\overline{\mathrm{c}}-\left(\frac{\overline{\mathrm{a}} \cdot \overline{\bar{c}}}{\overline{\mathrm{a}} \overline{\mathrm{b}}}\right) \overline{\mathrm{b}}$
$\Rightarrow \overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{d}})$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}=(\overline{\mathrm{a}} \cdot \overline{\mathrm{d}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{d}}$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}=-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{d}}$
$\therefore \overline{\mathrm{d}}=\overline{\mathrm{c}}-\left(\frac{\overline{\mathrm{a}} \cdot \overline{\bar{c}}}{\overline{\mathrm{a}} \overline{\mathrm{b}}}\right) \overline{\mathrm{b}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.