Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The vector(s) which is/are coplanar with vectors $\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$, are perpendicular to the vector $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ is/are
MathematicsVector AlgebraJEE AdvancedJEE Advanced 2011 (Paper 1)
Options:
  • A
    $\hat{\mathbf{j}}-\hat{\mathbf{k}}$
  • B
    $-\hat{\mathbf{i}}+\hat{\mathbf{j}}$
  • C
    $\hat{\mathbf{i}}-\hat{\mathbf{j}}$
  • D
    $-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
Solution:
2214 Upvotes Verified Answer
The correct answers are:
$\hat{\mathbf{j}}-\hat{\mathbf{k}}$
,
$-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
Let $\mathbf{a}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\mathbf{c}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
$\therefore$ A vector coplanar to $\mathbf{a}$ and $\mathbf{b}$, and perpendicular to $\mathbf{c}$.
Now, $\quad \lambda(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$
$\Rightarrow \quad \lambda\{(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{c}) \mathbf{a}\}$
$\Rightarrow \quad \lambda\{(1+1+4)(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}})$
$-(1+2+1)(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})\}$
$\Rightarrow \lambda\{6 \hat{\mathbf{i}}+12 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}-6 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-12 \hat{\mathbf{k}}\}$
$\Rightarrow \lambda\{6 \hat{\mathbf{j}}-6 \hat{\mathbf{k}}\} \Rightarrow 6 \lambda(\hat{\mathbf{j}}-\hat{\mathbf{k}})$
For $\lambda=\frac{1}{6} \Rightarrow$ Option (a) is correct.
For $\lambda=-\frac{1}{6} \Rightarrow$ Option (d) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.