Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Three rods each of length \(l\) and cross sectional area \(A\) joined in series between two heat reservoirs as shown in the figure. Their conductivities are \(2 K, K\) and \(\frac{K}{2}\), respectively. Assuming that the conductors are insulated from surroundings, the temperatures \(T_1\) and \(T_2\) of the junctions in steady state condition are respectively.

PhysicsThermal Properties of MatterAP EAMCETAP EAMCET 2019 (23 Apr Shift 1)
Options:
  • A \(\frac{600}{7}{ }^{\circ} \mathrm{C}, \frac{400}{7}{ }^{\circ} \mathrm{C}\)
  • B \(\frac{600}{7}{ }^{\circ} \mathrm{C}, \frac{700}{4}{ }^{\circ} \mathrm{C}\)
  • C \(\frac{500}{6}{ }^{\circ} \mathrm{C}, \frac{600}{5}{ }^{\circ} \mathrm{C}\)
  • D \(\frac{600}{4}{ }^{\circ} \mathrm{C}, \frac{400}{7}{ }^{\circ} \mathrm{C}\)
Solution:
1139 Upvotes Verified Answer
The correct answer is: \(\frac{600}{7}{ }^{\circ} \mathrm{C}, \frac{400}{7}{ }^{\circ} \mathrm{C}\)
Key idea In a series combination of heat conductors, the rate of heat flow remains constant.
According to the question, the figure given below shows the conduction of heat through series combinations of rods.


where, \(T_1, T_2=\) temperature of junctions,
\(I=\text { heat current }=\frac{d Q}{d t}\)
As, \(\frac{d Q_1}{d t}=\frac{d Q_2}{d t}=\frac{d Q_3}{d t}=\frac{T_i-T_f}{k_{\text {eq }}}\)
So, \(\frac{k_1 A_1\left(T_i-T_1\right)}{l_1}=\frac{k_2 A_2\left(T_1-T_2\right)}{l_2}=\frac{k_3 A_3\left(T_2-T_f\right)}{l_3}\)
\(\begin{array}{rlrl}
& \ddots & A_1 & =A_2=A_3 \\
& \text {and } & l_1 & =l_2=l_3 \\
\Rightarrow & 2 k\left(100-T_1\right) & =k\left(T_1-T_2\right)=0.5\left(T_2-0\right) \ldots (i)
\end{array}\)
Equivalent coefficient of thermal conductivity,
\(\begin{aligned}
& \frac{1}{k_{\mathrm{eq}}}=\frac{1}{2 k}+\frac{1}{k}+\frac{2}{k} \\
& \Rightarrow k_{\text {eq }}=\frac{2 k}{7} \\
& \because \text { Heat current, } \frac{d Q}{d t}=\frac{d Q_1}{d t} \\
& \Rightarrow \frac{k_{e q} A\left(T_i-T_f\right)}{l}=\frac{k_1 A_1\left(T_i-T_1\right)}{l_1}
\end{aligned}\)
here, \(l=l_1+l_2+l_3=l_1+l_1+l_1=3 l_1\) and
\(A=A_1+A_2+A_3=A_1+A_1+A_1=3 A_1\)
So, \(\frac{2 k}{7} \times \frac{3 A_1}{3 l_1}(100-0)=\frac{2 k A_1\left(100-T_1\right)}{l_1}\)
or \(\frac{1}{7} \times 100=100-T_1\)
\(\begin{array}{ll}
\Rightarrow & T_1=100-\frac{100}{7} \\
\Rightarrow & T_1=\frac{600^{\circ} \mathrm{C}}{7}
\end{array}\)
Similarly,
From Eq. (i), we get
\(\begin{aligned}
2 k\left(100-T_1\right) & =0.5 k T_2 \\
\Rightarrow 200-2 \times \frac{600}{7} & =0.5 T_2 \\
\Rightarrow T_2 & =\frac{400^{\circ}}{7} \mathrm{C}
\end{aligned}\)
Hence, the correct option is (a).

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.