Search any question & find its solution
Question:
Answered & Verified by Expert
Two bodies of $6 \mathrm{~kg}$ and $4 \mathrm{~kg}$ masses have their velocity $5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+10 \hat{\mathbf{k}}$ and $10 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ respectively. Then the velocity of their centre of mass is
Options:
Solution:
1560 Upvotes
Verified Answer
The correct answer is:
$7 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}$
Given, $m_1=6 \mathrm{~kg}, m_2=4 \mathrm{~kg}$
$\overrightarrow{\mathbf{v}}_1=5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+10 \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{v}}_2=10 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
The velocity of centre of mass is
$\begin{aligned} \overrightarrow{\mathbf{v}} & =\frac{m_1 \overrightarrow{\mathbf{v}}_1+m_2 \overrightarrow{\mathbf{v}}_2}{m_1+m_2} \\ & =\frac{6(5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+10 \hat{\mathbf{k}})+4(10 \hat{\mathbf{i}}-2 \hat{\mathbf{i}}+5 \hat{\mathbf{k}})}{6+4} \\ & =\frac{70 \hat{\mathbf{i}}-20 \hat{\mathbf{j}}+80 \hat{\mathbf{k}}}{10} \\ & =7 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}\end{aligned}$
$\overrightarrow{\mathbf{v}}_1=5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+10 \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{v}}_2=10 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
The velocity of centre of mass is
$\begin{aligned} \overrightarrow{\mathbf{v}} & =\frac{m_1 \overrightarrow{\mathbf{v}}_1+m_2 \overrightarrow{\mathbf{v}}_2}{m_1+m_2} \\ & =\frac{6(5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+10 \hat{\mathbf{k}})+4(10 \hat{\mathbf{i}}-2 \hat{\mathbf{i}}+5 \hat{\mathbf{k}})}{6+4} \\ & =\frac{70 \hat{\mathbf{i}}-20 \hat{\mathbf{j}}+80 \hat{\mathbf{k}}}{10} \\ & =7 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.