Search any question & find its solution
Question:
Answered & Verified by Expert
Two coherent sources whose intensity ratio is $64: 1$ produce interference fringes. The ratio of intensities of maxima and minima is
Options:
Solution:
1731 Upvotes
Verified Answer
The correct answer is:
$81: 49$
The ratio of intensities of maxima and minima
$\frac{I_{\max }}{I_{\min }}=\frac{\left(\sqrt{I_1}+\sqrt{I_2}\right)^2}{\left(\sqrt{I_1}-\sqrt{I_2}\right)^2}$
$=\frac{(\sqrt{64}+\sqrt{1})^2}{(\sqrt{64}-\sqrt{1})^2}$
$\frac{I_{\max }}{I_{\min }}=\frac{(8+1)^2}{(8-1)^2}=\frac{81}{49}$
$\frac{I_{\max }}{I_{\min }}=\frac{\left(\sqrt{I_1}+\sqrt{I_2}\right)^2}{\left(\sqrt{I_1}-\sqrt{I_2}\right)^2}$
$=\frac{(\sqrt{64}+\sqrt{1})^2}{(\sqrt{64}-\sqrt{1})^2}$
$\frac{I_{\max }}{I_{\min }}=\frac{(8+1)^2}{(8-1)^2}=\frac{81}{49}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.