Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Two tangents are drawn from a point P to the circle x2+y2-2x-4y+4=0, such that the angle between these tangents is tan-1125, where tan-1125(0,π). If the centre of the circle is denoted by C and these tangents touch the circle at points A and B, then the ratio of the areas of ΔPAB and ΔCAB is :
MathematicsCircleJEE MainJEE Main 2021 (17 Mar Shift 2)
Options:
  • A 11:4
  • B 9:4
  • C 3:1
  • D 2:1
Solution:
2808 Upvotes Verified Answer
The correct answer is: 9:4

Let, the angle between the tangents PA and PB from the point P to the circle x2+y2-2x-4y+4=0 with centre C is θ.

Given θ=tan-1125  tanθ=125.

We know that the centre and radius of a circle x2+y2+2gx+2fy+c=0 are respectively -g, -f and g2+f2-c.

Thus, the centre and radius of the circle x2+y2-2x-4y+4=0 are respectively 1, 2 and 12+22-4=1 unit.

We know that the line joining the centre of a circle to the point of contact of the tangent is perpendicular to the tangent, hence CAP=CBP=90° also CP bisects the angle APB as CAPCBP by SSS congruency.

Thus, we have CPA=CPB=θ2

In CAP, we have tanθ2=ACAP

tanθ2=1AP

AP=cotθ2

Now, area of ΔPAB=12PAPBsinθ

Since, tangents to a circle from an external point are equal, hence PA=PB

Area of ΔPAB=12PA2sinθ

=12cot2θ2sinθ

=12cos2θ2sin2θ2sinθ

Using cos2x=2cos2x-1=1-2sin2x, we get

Area of ΔPAB=121+cosθ1-cosθsinθ

We have tanθ=125 sinθ=1213 & cosθ=513

Area of ΔPAB=121+5131-5131213

=12×188×1213=2726 sq units.

And, area of ΔCAB=12ACBCsinπ-θ

=12sinθ=121213=613 sq units.

  area of ΔPAB area of ΔCAB=2726613=94.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.