Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Using the property of determinants and without expanding, prove that
$\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|=0$
MathematicsDeterminants
Solution:
1080 Upvotes Verified Answer
$\begin{aligned} \text { L.H.S. } &=\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|: \\=& {\left[\begin{array}{ccc}a-b+b-c+c-a & b-c & c-a \\ b-c+c-a+a-b & c-a & a-b \\ c-a+(a-b)+(b-c) & a-b & b-c\end{array}\right] }\end{aligned}$
$\left(C_1+C_2+C_3 \Rightarrow C_1\right)$
$=\left|\begin{array}{lll}0 & b-c & c-a \\ 0 & c-a & a-b \\ 0 & a-b & b-c\end{array}\right|=0 \quad\left[\right.$ as $\left._1=0\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.