Search any question & find its solution
Question:
Answered & Verified by Expert
Water rises to a height $3 \mathrm{~cm}$ in a capillary tube. If cross-sectional area of capillary tube is reduced to $\frac{1}{0}$ th initial area then water will rise to a height of
Options:
Solution:
2141 Upvotes
Verified Answer
The correct answer is:
$9 \mathrm{~cm}$
$\mathrm{h}_{1} \mathrm{r}_{1}=\mathrm{h}_{2} \mathrm{r}_{2}$
$\frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}=\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}$
$\mathrm{~A} \propto \mathrm{r}^{2}$
$\sqrt{\mathrm{A}} \propto \mathrm{r}$
$\therefore \quad \mathrm{h}_{2}=\mathrm{h}_{1} \sqrt{\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}}=3 \sqrt{9}=3 \times 3=9 \mathrm{~cm}$
$\frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}=\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}$
$\mathrm{~A} \propto \mathrm{r}^{2}$
$\sqrt{\mathrm{A}} \propto \mathrm{r}$
$\therefore \quad \mathrm{h}_{2}=\mathrm{h}_{1} \sqrt{\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}}=3 \sqrt{9}=3 \times 3=9 \mathrm{~cm}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.