Search any question & find its solution
Question:
Answered & Verified by Expert
$|x| < 1$, the coefficient of $x^3$ in the expansion of $\log \left(1+x+x^2\right)$ in ascending powers of $x$, is
Options:
Solution:
1425 Upvotes
Verified Answer
The correct answer is:
$-\frac{2}{3}$
We have,
$\log \left(1+x+x^2\right)=\log \frac{\left(1-x^3\right)}{(1-x)}$
$\begin{aligned} & =\log \left(1-x^3\right)-\log (1-x) \\ & =-\left[x^3+\frac{x^6}{2}+\frac{x^9}{3}+\ldots\right]+\left[x+\frac{x^2}{2}+\frac{x^3}{3}+\ldots\right] \\ & \text { Coefficient of } x^3=-1+\frac{1}{3}=-\frac{2}{3}\end{aligned}$
$\log \left(1+x+x^2\right)=\log \frac{\left(1-x^3\right)}{(1-x)}$
$\begin{aligned} & =\log \left(1-x^3\right)-\log (1-x) \\ & =-\left[x^3+\frac{x^6}{2}+\frac{x^9}{3}+\ldots\right]+\left[x+\frac{x^2}{2}+\frac{x^3}{3}+\ldots\right] \\ & \text { Coefficient of } x^3=-1+\frac{1}{3}=-\frac{2}{3}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.