Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{1}{x^2}(2 x+1)^3 d x$ is equal to
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2022 (05 Jul Shift 2)
Options:
  • A $4 x^2+12 x+6 \log x-\frac{1}{x}+C$
  • B $4 x^2+12 x-6 \log x-\frac{2}{x}+C$
  • C $2 x^2+8 x+3 \log x-\frac{2}{x}+C$
  • D $8 x^2+6 x+6 \log x+\frac{2}{x}+C$
Solution:
2209 Upvotes Verified Answer
The correct answer is: $4 x^2+12 x+6 \log x-\frac{1}{x}+C$
We have,
$\int \frac{1}{x^2}(2 x+1)^3 d x$
$\begin{aligned} & =\int \frac{\left(8 x^3+1+12 x^2+6 x\right)}{x^2} d x \\ & =\int\left(8 x+12+\frac{6}{x}+\frac{1}{z^2}\right) d x\end{aligned}$
$\left[\begin{array}{c}\because \int x^n d x=\frac{x^{n+1}}{n+1}+c, n \neq-1 \\ \int \frac{d x}{x}=\log x+c, x>0\end{array}\right]$
$=4 x^2+12 x+6 \log x-\frac{1}{x}+C$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.