Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{x+3}{(x+4)^2} e^x d x$ is equal to
MathematicsIndefinite IntegrationBITSATBITSAT 2023 (Memory Based Paper 1)
Options:
  • A $e^x\left(\frac{1}{x+4}\right)+C$
  • B $e^{-x}\left(\frac{1}{x+4}\right)+C$
  • C $e^{-x}\left(\frac{1}{x-4}\right)+C$
  • D $e^{2 x}\left(\frac{1}{x-4}\right)+C$
Solution:
1266 Upvotes Verified Answer
The correct answer is: $e^x\left(\frac{1}{x+4}\right)+C$
Suppose,
$I=\int \frac{x+3}{(x+4)^2} e^x d x=\int \frac{(x+4) 1}{(x+4)^2} e^x d x$
$=\int \frac{e^x}{(x+4)}-\int \frac{e^x}{(x+4)^2} d x$
$=\int e^x\left(\frac{1}{(x+4)}-\frac{1}{(x+4)^2}\right) d x$
$=e^x \frac{1}{(x+4)}+C$
$\left[\int e^x\left\{f(x)+f^{\prime}(x)\right\} d x=e^x f(x)+C\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.