Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{x^{2}+1}{x^{4}+x^{2}+1} d x=$
MathematicsIndefinite IntegrationMHT CETMHT CET 2020 (13 Oct Shift 1)
Options:
  • A $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x-\frac{1}{x}}{\sqrt{3}}\right)+c$
  • B $\frac{1}{3} \tan ^{-1}\left(\frac{x-\frac{1}{x}}{3}\right)+c$
  • C $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x+\frac{1}{x}}{\sqrt{3}}\right)+c$
  • D $\frac{1}{3} \tan ^{-1}\left(\frac{x+\frac{1}{x}}{3}\right)+c$
Solution:
1467 Upvotes Verified Answer
The correct answer is: $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x-\frac{1}{x}}{\sqrt{3}}\right)+c$
Let
$\begin{aligned} I &=\int \frac{x^{2}+1}{x^{4}+x^{2}+1} d x \\ &=\int \frac{x^{2}\left(1+\frac{1}{x^{2}}\right)}{x^{2}\left(x^{2}+1+\frac{1}{x^{2}}\right)} d x=\int \frac{1+\frac{1}{x^{2}}}{\left(x^{2}+\frac{1}{x^{2}}-2\right)+3} \\ I &=\int \frac{1+\frac{1}{x^{2}}}{\left(x-\frac{1}{x}\right)^{2}+(\sqrt{3})^{2}} d x \end{aligned}$
Put $x-\frac{1}{x}=t \Rightarrow\left(1+\frac{1}{x^{2}}\right) d x=d t$
$\therefore I=\int \frac{d t}{t^{2}+(\sqrt{3})^{2}}$
$=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{t}{\sqrt{3}}\right)+c=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x-\frac{1}{x}}{\sqrt{3}}\right)+c$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.