Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{e^{x}}{\sqrt{x}}(1+2 x) d x=$
MathematicsIndefinite IntegrationJEE Main
Options:
  • A $\frac{1}{\sqrt{x}} e^{x}+c$
  • B $2 \sqrt{x} e^{x}+c$
  • C $\frac{\sqrt{x}}{2} e^{x}+c$
  • D $\sqrt{x} e^{x}+c$
Solution:
1950 Upvotes Verified Answer
The correct answer is: $2 \sqrt{x} e^{x}+c$
$\begin{aligned} I &=\int \frac{e^{x}}{\sqrt{x}}(1+2 x) d x \\ &=\int e^{x}\left(\frac{1}{\sqrt{x}}+2 \sqrt{x}\right) d x=\int e^{x}\left(2 \sqrt{x}+\frac{1}{\sqrt{x}}\right) d x=2 \int e^{x}\left(\sqrt{x}+\frac{1}{2 \sqrt{x}}\right) d x \\ &=2 e^{x} \sqrt{x}+c \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.