Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$y-e^{a \sin ^{-1} x} \Rightarrow\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}$ is equal to
MathematicsApplication of DerivativesVITEEEVITEEE 2009
Options:
  • A $-\left(n^{2}+a^{2}\right) y_{n}$
  • B $\left(n^{2}-a^{2}\right) y_{n}$
  • C $\left(n^{2}+a^{2}\right) y_{n}$
  • D $-\left(n^{2}-a^{2}\right) y_{n}$
Solution:
1866 Upvotes Verified Answer
The correct answer is: $\left(n^{2}+a^{2}\right) y_{n}$
$y=e^{a \sin ^{-1} x}$
On differentiating w.r.t. $x$, we get
$$
\begin{array}{l}
y_{1}=e^{a \sin ^{-1} x} a \cdot \frac{1}{\sqrt{1-x^{2}}} \\
\Rightarrow y_{1} \sqrt{1-x^{2}}=a y \\
\Rightarrow\left(1-x^{2}\right) y_{1}^{2}=a^{2} y^{2}
\end{array}
$$
Again differentiating wr.t. $x$, we get
$$
\begin{array}{l}
\left(1-x^{2}\right) 2 y_{1} y_{2}-2 x y_{1}^{2}=a^{2} 2 y y_{1} \\
\Rightarrow\left(1-x^{2}\right) y_{2}-x y_{1}-a^{2} y=0
\end{array}
$$
Using Leibnitz's rule,
$$
\begin{array}{c}
\left(1-x^{2}\right) y_{n+2}+{ }^{n} C_{1} y_{n+1}(-2 x)+{ }^{n} C_{2} y_{n}(-2) \\
-x y_{n+1}-{ }^{n} C_{1} y_{n}-a^{2} y_{n}=0 \\
\Rightarrow\left(1-x^{2}\right) y_{n+2}+x y_{n+1}(-2 n-1) \\
\quad+y_{n}\left[-n(n-1)-n-a^{2}\right]=0 \\
\Rightarrow\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}=\left(n^{2}+a^{2}\right) y_{n}
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.